An integral transform of the Coulomb Green's function and off-shell scattering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 386141
(http://iopscience.iop.org/0305-4470/38/27/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.92
The article was downloaded on 03/06/2010 at 03:49

Please note that terms and conditions apply.

An integral transform of the Coulomb Green's function and off-shell scattering

U Laha
Department of Physics, National Institute of Technology, Jamshedpur 831 014, India

Received 8 February 2005, in final form 1 June 2005
Published 22 June 2005
Online at stacks.iop.org/JPhysA/38/6141

Abstract

A closed form expression is derived for the integral $\int_{0}^{\infty} \mathrm{d} r^{\prime} \mathrm{e}^{\mathrm{i} q r^{\prime}} G^{(+)}\left(r, r^{\prime}\right)$ and some possible applications of the result are discussed.

PACS numbers: $02.30 . \mathrm{Uu}, 03.65 . \mathrm{Nk}$

1. Introduction

At a centre of mass energy $E=k^{2}+\mathrm{i} \varepsilon$ the s-wave Coulomb Green's function $G^{(+)}\left(r, r^{\prime}\right)$ satisfies the differential equation

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+k^{2}-\frac{2 k \eta}{r}\right] G^{(+)}\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right), \tag{1}
\end{equation*}
$$

where η is the Sommerfeld parameter. Only the s-wave case is treated here and the subscript $\ell=0$ is omitted. However, higher partial wave treatment will involve mathematical difficulties. The solution of equation (1) is known in the literature [1] and is given by
$G^{(+)}\left(r, r^{\prime}\right)=2 \mathrm{i} k r r^{\prime} \mathrm{e}^{\mathrm{i} k\left(r+r^{\prime}\right)} \Gamma(1+\mathrm{i} \eta) \Phi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r_{<}\right) \Psi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r_{>}\right)$,
where $r_{<}$and $r_{>}$are the larger and smaller values of r and r^{\prime}. Here Φ and Ψ stand for the regular and irregular confluent hypergeometric functions. Let the function $F\left(r, r^{\prime}\right)$ be related to $G^{(+)}\left(r, r^{\prime}\right)$ by

$$
\begin{equation*}
G^{(+)}\left(r, r^{\prime}\right)=r \mathrm{e}^{\mathrm{i} k r} F\left(r, r^{\prime}\right) \tag{3}
\end{equation*}
$$

Then the integral transform $\int_{0}^{\infty} \mathrm{d} r^{\prime} \mathrm{e}^{\mathrm{i} q r^{\prime}} F\left(r, r^{\prime}\right)=\left[F\left(r, r^{\prime}\right) ; q\right]=\tilde{F}(r, q)$ is related to

$$
\tilde{G}^{(+)}(r, q)=\int_{0}^{\infty} \mathrm{d} r^{\prime} \mathrm{e}^{\mathrm{i} q r} G^{(+)}\left(r, r^{\prime}\right)
$$

by

$$
\begin{equation*}
\tilde{G}^{(+)}(r, q)=r \mathrm{e}^{\mathrm{i} k r} \tilde{F}(r, q) \tag{4}
\end{equation*}
$$

In the present paper, a closed form expression for $\tilde{G}^{(+)}(r, q)$ is derived to examine the usefulness of the result in the study of quantum mechanical scattering by the Coulomb field.

Section 2 is devoted to developing a differential equation method for evaluating $\tilde{G}^{(+)}(r, q)$. In section 3 some applications of the expression for $\tilde{G}^{(+)}(r, q)$ are discussed with particular emphasis on off-shell physical and Jost solutions for scattering by the Coulomb potential. Finally, some concluding remarks are presented in section 4.

2. Result for $\tilde{\boldsymbol{G}}^{(+)}(r, q)$

Equation (3) is substituted in equation (1) to get

$$
\begin{equation*}
\left[r \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+(2-2 \mathrm{i} k) \frac{\mathrm{d}}{\mathrm{~d} r}+(2 \mathrm{i} k-2 k \eta)\right] F\left(r, r^{\prime}\right)=\mathrm{e}^{-\mathrm{i} k r} \delta\left(r-r^{\prime}\right) \tag{5}
\end{equation*}
$$

Taking the integral transform of the above equation by $\mathrm{e}^{\mathrm{i} q r^{\prime}}$ with respect to r^{\prime} and substituting $z=-2 \mathrm{i} k r$, equation (5) is obtained as

$$
\begin{equation*}
\left[z \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}+(2-z) \frac{\mathrm{d}}{\mathrm{~d} z}-(1+\mathrm{i} \eta)\right] \tilde{F}(z, q)=-\left(\frac{1}{2 \mathrm{i} k}\right) \mathrm{e}^{\rho z}, \tag{6}
\end{equation*}
$$

with $\rho=\frac{(k-q)}{2 k}$.
The two independent solutions of the homogeneous part of equation (6) are given by

$$
\begin{equation*}
\Phi(a, c ; z)=\left[\frac{\Gamma(c)}{\Gamma(a)}\right] \sum_{n=0}^{\infty}\left[\frac{\Gamma(a+n)}{\Gamma(c+n)}\right] \frac{z^{n}}{n!} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Phi}(a, c ; z)=z^{1-c} \Phi(a-c+1,2-c ; z) \tag{8a}
\end{equation*}
$$

with

$$
\begin{equation*}
a=1+\mathrm{i} \eta \quad \text { and } \quad c=2 \tag{8b}
\end{equation*}
$$

Note that for $c=2$ equation ($8 a$) is not an acceptable solution. However, $\bar{\Phi}(a, c ; z)$ tends towards a solution [2] when c approaches 2 . In the subsequent discussion that limit is always meant. This is no loss of generalization. See, for example, the treatment of the Coulomb field by Newton [1]. Another solution [2] of equation (6), defined within the same limiting procedure, is

$$
\begin{equation*}
\Psi(a, c ; z)=\left[\frac{\Gamma(1-c)}{\Gamma(a-c+1)}\right] \Phi(a, c ; z)+\left[\frac{\Gamma(1-c)}{\Gamma(a)}\right] \bar{\Phi}(a, c ; z) . \tag{9}
\end{equation*}
$$

According to Babister [3] the particular solution of the non-homogeneous confluent hypergeometric equation in (6) reads

$$
\begin{equation*}
[F(z, q)]_{P}=-\left(\frac{1}{2 \mathrm{i} k}\right) \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ; z) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\rho, \sigma}(a, c ; z)=\sum_{n=0}^{\infty} \frac{\rho^{n}}{n!} \theta_{\sigma+n}(a, c ; z) \tag{11a}
\end{equation*}
$$

with a, c, ρ, σ constants and

$$
\begin{align*}
\theta_{\sigma}(a, c ; z)= & \frac{1}{(c-1)}\left[\Phi(a, c ; z) \int_{0}^{z} \mathrm{e}^{-z^{\prime}} z^{(\sigma+c-2)} \bar{\Phi}\left(a, c ; z^{\prime}\right) \mathrm{d} z^{\prime}\right. \\
& \left.-\bar{\Phi}(a, c ; z) \int_{0}^{z} \mathrm{e}^{-z^{\prime}} z^{\prime(\sigma+c-2)} \Phi\left(a, c ; z^{\prime}\right) \mathrm{d} z^{\prime}\right] \tag{11b}
\end{align*}
$$

The complete primitive of equation (6) is
$\tilde{F}(z, q)=A \Phi(1+\mathrm{i} \eta, 2 ; z)+B \bar{\Phi}(1+\mathrm{i} \eta, 2 ; z)-\left(\frac{1}{2 \mathrm{i} k}\right) \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ; z)$,
where A and B are arbitrary constants. The procedure of determining A and B is as follows. Combine equations (12) and (4) to get

$$
\begin{align*}
\tilde{G}^{(+)}(r, q)=r & \mathrm{e}^{\mathrm{i} k r} \\
& {[A \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)+B \bar{\Phi}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)} \tag{13}\\
& \left.-\left(\frac{1}{2 \mathrm{i} k}\right) \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right] .
\end{align*}
$$

Substitute equation (2) in equation (13) and compare both sides for $r=0$ to obtain $B=0$. In view of the above, equation (13) takes the form
$\tilde{G}^{(+)}(r, q)=r \mathrm{e}^{\mathrm{i} k r}\left[A \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-\left(\frac{1}{2 \mathrm{i} k}\right) \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right]$.
Taking the limit as $r \rightarrow \infty$ is rather tricky. With the help of equations (2), (9) and (11), equation (14) is expressed as

$$
\begin{align*}
2 \mathrm{i} k \Gamma(1+\mathrm{i} \eta) r & \mathrm{e}^{\mathrm{i} k r}\left[\Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Phi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right. \\
& \left.+\Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Psi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right] \\
= & r \mathrm{e}^{\mathrm{i} k r}\left[A \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-\frac{\Gamma(1+\mathrm{i} \eta)}{2 \mathrm{i} k} \sum_{n=0}^{\infty} \frac{\rho^{n}}{n!}\{\Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right. \\
& \times \int_{0}^{r} \mathrm{~d}\left(-2 \mathrm{i} k r^{\prime}\right) \mathrm{e}^{2 \mathrm{i} k r^{\prime}}\left(-2 \mathrm{i} k r^{\prime}\right)^{n+1} \Psi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)-\Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \\
& \left.\left.\times \int_{0}^{r} \mathrm{~d}\left(-2 \mathrm{i} k r^{\prime}\right) \mathrm{e}^{2 \mathrm{i} k r^{\prime}}\left(-2 \mathrm{i} k r^{\prime}\right)^{n+1} \Phi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right\}\right] \tag{15}
\end{align*}
$$

Carry out the summation first to get

$$
\begin{align*}
2 \mathrm{i} k \Gamma(1+\mathrm{i} \eta) r & \mathrm{e}^{\mathrm{i} k r}\left[\Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Phi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right. \\
& \left.+\Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Psi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right] \\
= & r \mathrm{e}^{\mathrm{i} k r}[A \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-2 \mathrm{i} k \Gamma(1+\mathrm{i} \eta)\{\Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \\
& \times \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Psi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)-\Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \\
& \left.\left.\times \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime} \mathrm{e}^{\mathrm{i}(k+q) r^{\prime}} \Phi\left(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r^{\prime}\right)\right\}\right] \tag{16}
\end{align*}
$$

As $r \rightarrow \infty$ the first term on the LHS cancels the last term on the RHS in the above equation to give the desired value of A as

$$
\begin{equation*}
A=-\left\{\frac{\mathrm{e}^{\mathrm{i} \pi / 2}}{(k+q)(1+\mathrm{i} \eta)}\right\} F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q-k)}{(q+k)}\right) . \tag{17}
\end{equation*}
$$

In deriving equation (17) the following relations $[2,4]$ are used,
$F\left(b, S ; 1+S+b+d ; 1-\frac{\mu}{a}\right)=\frac{a^{S} \Gamma(1+b+S-d)}{\Gamma(1+S-d) \Gamma(S)} \int_{0}^{\infty} \mathrm{e}^{-a x} x^{S-1} \Psi(b, d ; \mu x) \mathrm{d} x$,
with

$$
\begin{equation*}
\operatorname{Re} S>0, \quad 1+\operatorname{Re} S>\operatorname{Re} d, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
F(a, b ; c ; z)=(1-z)^{c-a-b} F(c-a, c-b ; c ; z) . \tag{19}
\end{equation*}
$$

In view of equations (14) and (17) the desired expression for $\tilde{G}^{(+)}(r, q)$ reads

$$
\begin{align*}
\tilde{G}^{(+)}(r, q)= & r \mathrm{e}^{\mathrm{i} k r}\left\{\left[\frac{\mathrm{e}^{-\mathrm{i} \pi / 2}}{(k+q)(1+\mathrm{i} \eta)}\right] F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q-k)}{(q+k)}\right)\right. \\
& \left.\times \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-\frac{1}{2 \mathrm{i} k} \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right\} \tag{20}
\end{align*}
$$

When $q \rightarrow-q$, equation (20) yields

$$
\begin{align*}
\tilde{G}^{(+)}(r,-q)= & r \mathrm{e}^{\mathrm{i} k r}\left\{\left[\frac{\mathrm{e}^{-\mathrm{i} \pi / 2}}{(k-q)(1+\mathrm{i} \eta)}\right] F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q+k)}{(q-k)}\right)\right. \\
& \left.\times \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-\frac{1}{2 \mathrm{i} k} \Lambda_{1-\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right\} . \tag{21}
\end{align*}
$$

3. Application of the expression for $\tilde{\boldsymbol{G}}^{(+)}(r, q)$

The integral transforms of the outgoing wave Coulomb Green's function can be exploited to construct exact analytical expressions for physical and Jost solutions. The off-shell physical solution $\psi^{(+)}(k, q, r)$ satisfies the inhomogeneous differential equation

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+k^{2}-\frac{2 k \eta}{r}\right] \psi^{(+)}(k, q, r)=\left(k^{2}-q^{2}\right) \sin (q r) . \tag{22}
\end{equation*}
$$

Fuda and Whiting [5] assumed that the particular integral of equation (22) represents the off-shell physical solution. Thus,

$$
\begin{align*}
\psi^{(+)}(k, q, r) & =\frac{\left(k^{2}-q^{2}\right)}{2 \mathrm{i}} \int_{0}^{\infty} \mathrm{d} r^{\prime} G^{(+)}\left(r, r^{\prime}\right)\left[\mathrm{e}^{\mathrm{i} q r^{\prime}}-\mathrm{e}^{-\mathrm{i} q r^{\prime}}\right] \\
& =\frac{\left(k^{2}-q^{2}\right)}{2 \mathrm{i}}\left[\tilde{G}^{(+)}(r, q)-\tilde{G}^{(+)}(r,-q)\right] . \tag{23}
\end{align*}
$$

In view of equations (20) and (21), equation (23) yields

$$
\begin{align*}
\psi^{(+)}(k, q, r)= & -\frac{1}{2(1+\mathrm{i} \eta)} r \mathrm{e}^{\mathrm{i} k r} \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\left[(k-q) F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q-k)}{(q+k)}\right)\right. \\
& \left.-(k+q) F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q+k)}{(q-k)}\right)\right] \\
& -\operatorname{Im}\left[\frac{\left(k^{2}-q^{2}\right)}{2 \mathrm{i} k} r \mathrm{e}^{\mathrm{i} k r} \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right] . \tag{24}
\end{align*}
$$

Following Babister's relation [3]

$$
\begin{equation*}
\Lambda_{1-\rho, \sigma}(a, c ; z)=\mathrm{e}^{(z-\mathrm{i} \pi \sigma)} \Lambda_{\rho, \sigma}\left(c-a, c ; z \mathrm{e}^{\mathrm{i} \pi}\right), \tag{25}
\end{equation*}
$$

one can easily prove that the quantity $\frac{\left(k^{2}-q^{2}\right)}{2 i k} r \mathrm{e}^{\mathrm{i} k r} \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)$ is real. After certain algebraic manipulation, with the help of the relations [1, 2]

$$
\begin{align*}
F(a, b ; c ; z)= & \frac{\Gamma(c) \Gamma(b-a)}{\Gamma(b) \Gamma(c-a)}(-z)^{-a} F\left(a, 1-c+a ; 1-b+a ; z^{-1}\right) \\
& +\frac{\Gamma(c) \Gamma(a-b)}{\Gamma(a) \Gamma(c-b)}(-z)^{-b} F\left(b, 1-c+b ; 1-a+b ; z^{-1}\right) \tag{26}
\end{align*}
$$

$$
\begin{equation*}
T\left(k, q, k^{2}\right)=\frac{1}{i \pi q f(k)}[f(k, q)-f(k-q)] \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(k, r)=\frac{\mathrm{e}^{\pi \eta / 2}}{2 k}\left[\frac{\mathrm{e}^{-\mathrm{i} \pi / 2}}{\Gamma(1-\mathrm{i} \eta)} f(k, r)+\frac{\mathrm{e}^{\mathrm{i} \pi / 2}}{\Gamma(1+\mathrm{i} \eta)} f(-k, r)\right] \tag{28}
\end{equation*}
$$

the regular solution, equation (24), is obtained as

$$
\begin{align*}
\psi^{(+)}(k, q, r)= & -\frac{1}{2} \pi q T\left(k, q, k^{2}\right) f(k, r)+\operatorname{Im}\left[\frac{\mathrm{e}^{\mathrm{i} \pi / 2}(q-k)}{(1+\mathrm{i} \eta)} F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q-k)}{(q+k)}\right)\right. \\
& \times r \mathrm{e}^{\mathrm{i} k r} \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-2 \mathrm{i} k \Gamma(1+\mathrm{i} \eta)\left(\frac{(q+k)}{(q-k)}\right)^{\mathrm{i} \eta} \\
& \left.\times r \mathrm{e}^{\mathrm{i} k r} \Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)-\frac{\left(k^{2}-q^{2}\right)}{2 \mathrm{i} k} r \mathrm{e}^{\mathrm{i} k r} \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right] . \tag{29}
\end{align*}
$$

The off-shell physical solution is related to half-shell T-matrix and off-shell Jost solution by

$$
\begin{equation*}
\psi^{(+)}(k, q, r)=-\frac{1}{2} \pi q T\left(k, q, k^{2}\right) f(k, r)+\operatorname{Im} f(k, q, r) . \tag{30}
\end{equation*}
$$

On comparing equations (29) and (30) the off-shell Jost solution reads

$$
\begin{array}{rl}
f(k, q, r)=r & r \mathrm{e}^{\mathrm{i} k r}\left[\frac{\mathrm{e}^{\mathrm{i} \pi / 2}(q-k)}{(1+\mathrm{i} \eta)} F\left(1, \mathrm{i} \eta ; 2+\mathrm{i} \eta ; \frac{(q-k)}{(q+k)}\right) \Phi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right. \\
& -2 \mathrm{i} k \Gamma(1+\mathrm{i} \eta)\left(\frac{(q+k)}{(q-k)}\right)^{\mathrm{i} \eta} \Psi(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r) \\
& \left.-\frac{\left(k^{2}-q^{2}\right)}{2 \mathrm{i} k} \Lambda_{\rho, 1}(1+\mathrm{i} \eta, 2 ;-2 \mathrm{i} k r)\right] \tag{31}
\end{array}
$$

which is consistent with the earlier result [6] obtained by a different method.
Some years ago we [7] have also derived an expression for the s-wave Coulomb off-shell Jost solution from its integral representation in terms of products of confluent hypergeometric functions. But the expression in equation (31) or in [6] is much more simpler than the previous one. A couple of useful checks are made on the expression for the Coulomb off-shell Jost solution with particular emphasis on their limiting behaviour and on-shell discontinuity [8]. For example, in the limit of no Coulomb field, $f(k, q, r)=\mathrm{e}^{\mathrm{i} k r}$. Secondly,

$$
\begin{equation*}
f(k, q)=L t_{r \rightarrow 0} f(k, q, r)=\left(\frac{(q+k)}{(q-k)}\right)^{\mathrm{i} \eta} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
f(k, q)=L t_{q \rightarrow k}\left\{\frac{\mathrm{e}^{\pi \eta / 2}}{\Gamma(1+\mathrm{i} \eta)}\left(\frac{(q+k)}{(q-k)}\right)^{\mathrm{i} \eta} f(k, q, r)\right\} \tag{33}
\end{equation*}
$$

Equations (32) and (33) can easily be verified from the results in equation (31), which are in agreement with earlier results [1, 9].

4. Concluding remarks

A closed form expression for the integral $\int_{0}^{\infty} \mathrm{d} r^{\prime} \mathrm{e}^{\mathrm{i} q r^{\prime}} G^{(+)}\left(r, r^{\prime}\right)$ for motion in the Coulomb field is derived and some of its applications, particularly the off-shell Jost solution, are discussed. By exploiting the relation that exists between fully off-shell T-matrix and $\psi^{(+)}(k, q, r)$, one will be in a position to write an uncomplicated expression for the off-shell T-matrix. The matter will be reported in detail in a subsequent paper. This conjecture represents a straightforward approach to deal with off-shell scattering on the Coulomb potential. Also the closed form expression for $f(k, q, r)$ is believed to be useful for the description of the physical processes in atomic and molecular physics [10].

References

[1] Newton R G 1982 Scattering Theory of Waves and Particles (New York: McGraw-Hill)
[2] Erdelyi A 1953 Higher Transcendental Functions vol 1 (New York: McGraw-Hill)
[3] Babister A W 1967 Transcendental Functions Satisfying Non-Homogeneous Linear Differential Equations (New York: MacMillan)
[4] Slater L J 1960 Confluent Hypergeometric Functions (New York: Cambridge University Press)
[5] Fuda M G and Whiting J S 1973 Phys. Rev. C 81255
[6] Laha U and Kundu B 2005 Phys. Rev. A 701
[7] Talukdar B, Laha U and Das U 1991 Phys. Rev. A 431183
[8] van Haeringen H and van Wageningen R 1975 J. Math. Phys. 161441
[9] van Haeringen H 1978 Phys. Rev. A 1856
Talukdar B, Ghosh D K and Sasakawa T 1984 J. Math. Phys. 25323
[10] Chen J C Y and Chen A C 1972 Advances in Atomic and Molecular Physics ed D R Bates and I Easterman (New York: Academic)

