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Abstract
A closed form expression is derived for the integral

∫ ∞
0 dr ′ eiqr ′

G(+)(r, r ′) and
some possible applications of the result are discussed.

PACS numbers: 02.30.Uu, 03.65.Nk

1. Introduction

At a centre of mass energy E = k2 + iε the s-wave Coulomb Green’s function G(+)(r, r ′)
satisfies the differential equation[

d2

dr2
+ k2 − 2kη

r

]
G(+)(r, r ′) = δ(r − r ′), (1)

where η is the Sommerfeld parameter. Only the s-wave case is treated here and the subscript
�= 0 is omitted. However, higher partial wave treatment will involve mathematical difficulties.
The solution of equation (1) is known in the literature [1] and is given by

G(+)(r, r ′) = 2ikrr ′ eik(r+r ′)�(1 + iη)�(1 + iη, 2;−2ikr<)�(1 + iη, 2;−2ikr>), (2)

where r< and r> are the larger and smaller values of r and r′. Here � and � stand for the
regular and irregular confluent hypergeometric functions. Let the function F(r, r ′) be related
to G(+)(r, r ′) by

G(+)(r, r ′) = r eikrF (r, r ′). (3)

Then the integral transform
∫ ∞

0 dr ′ eiqr ′
F(r, r ′) = [F(r, r ′); q] = F̃ (r, q) is related to

G̃(+)(r, q) =
∫ ∞

0
dr ′ eiqrG(+)(r, r ′)

by

G̃(+)(r, q) = r eikr F̃ (r, q). (4)

In the present paper, a closed form expression for G̃(+)(r, q) is derived to examine the
usefulness of the result in the study of quantum mechanical scattering by the Coulomb field.
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Section 2 is devoted to developing a differential equation method for evaluating G̃(+)(r, q).
In section 3 some applications of the expression for G̃(+)(r, q) are discussed with particular
emphasis on off-shell physical and Jost solutions for scattering by the Coulomb potential.
Finally, some concluding remarks are presented in section 4.

2. Result for G̃(+)(r, q)

Equation (3) is substituted in equation (1) to get[
r

d2

dr2
+ (2 − 2ik)

d

dr
+ (2ik − 2kη)

]
F(r, r ′) = e−ikrδ(r − r ′). (5)

Taking the integral transform of the above equation by eiqr ′
with respect to r′ and substituting

z = −2ikr , equation (5) is obtained as[
z

d2

dz2
+ (2 − z)

d

dz
− (1 + iη)

]
F̃ (z, q) = −

(
1

2ik

)
eρz, (6)

with ρ = (k−q)

2k
.

The two independent solutions of the homogeneous part of equation (6) are given by

�(a, c; z) =
[

�(c)

�(a)

] ∞∑
n=0

[
�(a + n)

�(c + n)

]
zn

n!
(7)

and

�̄(a, c; z) = z1−c�(a − c + 1, 2 − c; z) (8a)

with

a = 1 + iη and c = 2. (8b)

Note that for c = 2 equation (8a) is not an acceptable solution. However, �̄(a, c; z) tends
towards a solution [2] when c approaches 2. In the subsequent discussion that limit is always
meant. This is no loss of generalization. See, for example, the treatment of the Coulomb
field by Newton [1]. Another solution [2] of equation (6), defined within the same limiting
procedure, is

�(a, c; z) =
[

�(1 − c)

�(a − c + 1)

]
�(a, c; z) +

[
�(1 − c)

�(a)

]
�̄(a, c; z). (9)

According to Babister [3] the particular solution of the non-homogeneous confluent
hypergeometric equation in (6) reads

[F(z, q)]P = −
(

1

2ik

)
	ρ,1(1 + iη, 2; z) (10)

where

	ρ,σ (a, c; z) =
∞∑

n=0

ρn

n!
θσ+n(a, c; z) (11a)

with a, c, ρ, σ constants and

θσ (a, c; z) = 1

(c − 1)

[
�(a, c; z)

∫ z

0
e−z′

z′(σ+c−2)�̄(a, c; z′) dz′

− �̄(a, c; z)

∫ z

0
e−z′

z′(σ+c−2)�(a, c; z′) dz′
]

. (11b)
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The complete primitive of equation (6) is

F̃ (z, q) = A�(1 + iη, 2; z) + B�̄(1 + iη, 2; z) −
(

1

2ik

)
	ρ,1(1 + iη, 2; z), (12)

where A and B are arbitrary constants. The procedure of determining A and B is as follows.
Combine equations (12) and (4) to get

G̃(+)(r, q) = r eikr

[
A�(1 + iη, 2;−2ikr) + B�̄(1 + iη, 2;−2ikr)

−
(

1

2ik

)
	ρ,1(1 + iη, 2;−2ikr)

]
. (13)

Substitute equation (2) in equation (13) and compare both sides for r = 0 to obtain B = 0. In
view of the above, equation (13) takes the form

G̃(+)(r, q) = r eikr

[
A�(1 + iη, 2;−2ikr) −

(
1

2ik

)
	ρ,1(1 + iη, 2;−2ikr)

]
. (14)

Taking the limit as r → ∞ is rather tricky. With the help of equations (2), (9) and (11),
equation (14) is expressed as

2ik�(1 + iη)r eikr

[
�(1 + iη, 2;−2ikr)

∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′)

+ �(1 + iη, 2;−2ikr)

∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′)
]

= r eikr

[
A�(1 + iη, 2;−2ikr) − �(1 + iη)

2ik

∞∑
n=0

ρn

n!

{
�(1 + iη, 2;−2ikr)

×
∫ r

0
d(−2ikr ′) e2ikr ′

(−2ikr ′)n+1�(1 + iη, 2;−2ikr ′) − �(1 + iη, 2;−2ikr)

×
∫ r

0
d(−2ikr ′) e2ikr ′

(−2ikr ′)n+1�(1 + iη, 2;−2ikr ′)
}]

. (15)

Carry out the summation first to get

2ik�(1 + iη)r eikr

[
�(1 + iη, 2;−2ikr)

∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′)

+ �(1 + iη, 2;−2ikr)

∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′)
]

= r eikr

[
A�(1 + iη, 2;−2ikr)−2ik�(1 + iη)

{
�(1 + iη, 2;−2ikr)

×
∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′) − �(1 + iη, 2;−2ikr)

×
∫ r

0
dr ′r ′ ei(k+q)r ′

�(1 + iη, 2;−2ikr ′)
}]

. (16)

As r → ∞ the first term on the LHS cancels the last term on the RHS in the above equation
to give the desired value of A as

A = −
{

eiπ/2

(k + q)(1 + iη)

}
F

(
1, iη; 2 + iη; (q − k)

(q + k)

)
. (17)

In deriving equation (17) the following relations [2, 4] are used,

F
(
b, S; 1 + S + b + d; 1 − µ

a

)
= aS�(1 + b + S − d)

�(1 + S − d)�(S)

∫ ∞

0
e−axxS−1�(b, d;µx) dx,
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with

Re S > 0, 1 + Re S > Re d, (18)

and

F(a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z). (19)

In view of equations (14) and (17) the desired expression for G̃(+)(r, q) reads

G̃(+)(r, q) = r eikr

{[
e−iπ/2

(k + q)(1 + iη)

]
F

(
1, iη; 2 + iη; (q − k)

(q + k)

)

×�(1 + iη, 2;−2ikr) − 1

2ik
	ρ,1(1 + iη, 2;−2ikr)

}
. (20)

When q → −q, equation (20) yields

G̃(+)(r,−q) = r eikr

{[
e−iπ/2

(k − q)(1 + iη)

]
F

(
1, iη; 2 + iη; (q + k)

(q − k)

)

×�(1 + iη, 2;−2ikr) − 1

2ik
	1−ρ,1(1 + iη, 2;−2ikr)

}
. (21)

3. Application of the expression for G̃(+)(r, q)

The integral transforms of the outgoing wave Coulomb Green’s function can be exploited to
construct exact analytical expressions for physical and Jost solutions. The off-shell physical
solution ψ(+)(k, q, r) satisfies the inhomogeneous differential equation[

d2

dr2
+ k2 − 2kη

r

]
ψ(+)(k, q, r) = (k2 − q2) sin(qr). (22)

Fuda and Whiting [5] assumed that the particular integral of equation (22) represents the
off-shell physical solution. Thus,

ψ(+)(k, q, r) = (k2 − q2)

2i

∫ ∞

0
dr ′G(+)(r, r ′)[eiqr ′ − e−iqr ′

]

= (k2 − q2)

2i
[G̃(+)(r, q) − G̃(+)(r,−q)]. (23)

In view of equations (20) and (21), equation (23) yields

ψ(+)(k, q, r) = − 1

2(1 + iη)
r eikr�(1 + iη, 2;−2ikr)

[
(k − q)F

(
1, iη; 2 + iη; (q − k)

(q + k)

)

− (k + q)F

(
1, iη; 2 + iη; (q + k)

(q − k)

)]

− Im

[
(k2 − q2)

2ik
r eikr	ρ,1(1 + iη, 2;−2ikr)

]
. (24)

Following Babister’s relation [3]

	1−ρ,σ (a, c; z) = e(z−iπσ)	ρ,σ (c − a, c; z eiπ ), (25)

one can easily prove that the quantity (k2−q2)

2ik r eikr	ρ,1(1 + iη, 2;−2ikr) is real. After certain
algebraic manipulation, with the help of the relations [1, 2]

F(a, b; c; z) = �(c)�(b − a)

�(b)�(c − a)
(−z)−aF (a, 1 − c + a; 1 − b + a; z−1)

+
�(c)�(a − b)

�(a)�(c − b)
(−z)−bF (b, 1 − c + b; 1 − a + b; z−1), (26)
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T (k, q, k2) = 1

iπqf (k)
[f (k, q) − f (k − q)] , (27)

and

ϕ(k, r) = eπη/2

2k

[
e−iπ/2

�(1 − iη)
f (k, r) +

eiπ/2

�(1 + iη)
f (−k, r)

]
, (28)

the regular solution, equation (24), is obtained as

ψ(+)(k, q, r) = −1

2
πqT (k, q, k2)f (k, r) + Im

[
eiπ/2(q − k)

(1 + iη)
F

(
1, iη; 2 + iη; (q − k)

(q + k)

)

× r eikr�(1 + iη, 2;−2ikr) − 2ik�(1 + iη)

(
(q + k)

(q − k)

)iη

× r eikr�(1 + iη, 2;−2ikr) − (k2 − q2)

2ik
r eikr	ρ,1(1 + iη, 2;−2ikr)

]
. (29)

The off-shell physical solution is related to half-shell T-matrix and off-shell Jost solution by

ψ(+)(k, q, r) = − 1
2πqT (k, q, k2)f (k, r) + Imf (k, q, r). (30)

On comparing equations (29) and (30) the off-shell Jost solution reads

f (k, q, r) = r eikr

[
eiπ/2(q − k)

(1 + iη)
F

(
1, iη; 2 + iη; (q − k)

(q + k)

)
�(1 + iη, 2;−2ikr)

− 2ik�(1 + iη)

(
(q + k)

(q − k)

)iη

�(1 + iη, 2;−2ikr)

− (k2 − q2)

2ik
	ρ,1(1 + iη, 2;−2ikr)

]
, (31)

which is consistent with the earlier result [6] obtained by a different method.
Some years ago we [7] have also derived an expression for the s-wave Coulomb off-shell

Jost solution from its integral representation in terms of products of confluent hypergeometric
functions. But the expression in equation (31) or in [6] is much more simpler than the previous
one. A couple of useful checks are made on the expression for the Coulomb off-shell Jost
solution with particular emphasis on their limiting behaviour and on-shell discontinuity [8].
For example, in the limit of no Coulomb field, f (k, q, r) = eikr . Secondly,

f (k, q) = Ltr→0f (k, q, r) =
(

(q + k)

(q − k)

)iη

(32)

and

f (k, q) = Ltq→k

{
eπη/2

�(1 + iη)

(
(q + k)

(q − k)

)iη

f (k, q, r)

}
. (33)

Equations (32) and (33) can easily be verified from the results in equation (31), which are in
agreement with earlier results [1, 9].

4. Concluding remarks

A closed form expression for the integral
∫ ∞

0 dr ′ eiqr ′
G(+)(r, r ′) for motion in the Coulomb field

is derived and some of its applications, particularly the off-shell Jost solution, are discussed.
By exploiting the relation that exists between fully off-shell T-matrix and ψ(+)(k, q, r), one
will be in a position to write an uncomplicated expression for the off-shell T-matrix. The matter
will be reported in detail in a subsequent paper. This conjecture represents a straightforward
approach to deal with off-shell scattering on the Coulomb potential. Also the closed form
expression for f (k, q, r) is believed to be useful for the description of the physical processes
in atomic and molecular physics [10].
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